Snap 0.9.2

Snap 0.9.2

LangLanguage SwiftSwift
License MIT
ReleasedLast Release Mar 2015
SPMSupports SPM

Maintained by Robert Payne.

Snap 0.9.2

Snap is a light-weight layout framework which wraps AutoLayout with a nicer syntax. Snap has its own layout DSL which provides a chainable way of describing your NSLayoutConstraints which results in layout code that is more concise and readable. Snap supports both iOS and OS X.

Snap uses some Swift-only features like function overloading, so it cannot be used from Objective-C. Because of this we’ve chosen to swap prefixes from Masonry’s mas_ to snp_ so you can use both Masonry and Snap in the same project.


  • iOS 7.0+ / Mac OS X 10.9+
  • Xcode 6.1


Embedded frameworks require a minimum deployment target of iOS 8 or OS X Mavericks.


If you prefer not to use either of the aforementioned dependency managers, you can integrate Snap into your project manually.

Embedded Framework

  • Add Snap as a submodule by opening the Terminal, cd-ing into your top-level project directory, and entering the following command:
$ git submodule add
  • Open the Snap folder, and drag Snap.xcodeproj into the file navigator of your app project.
  • In Xcode, navigate to the target configuration window by clicking on the blue project icon, and selecting the application target under the "Targets" heading in the sidebar.
  • Ensure that the deployment target of Snap.framework matches that of the application target.
  • In the tab bar at the top of that window, open the "Build Phases" panel.
  • Expand the "Target Dependencies" group, and add Snap.framework.
  • Click on the + button at the top left of the panel and select "New Copy Files Phase". Rename this new phase to "Copy Frameworks", set the "Destination" to "Frameworks", and add Snap.framework.

What's wrong with NSLayoutConstraints?

Under the hood Auto Layout is a powerful and flexible way of organising and laying out your views. However creating constraints from code is verbose and not very descriptive. Imagine a simple example in which you want to have a view fill its superview but inset by 10 pixels on every side

let superview = self;

let view1 = UIView()
view1.backgroundColor = UIColor.greenColor()

let padding = UIEdgeInsetsMake(10, 10, 10, 10)

    item: view1,
    attribute: NSLayoutAttribute.Top,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Top,
    multiplier: 1.0,
    item: view1,
    attribute: NSLayoutAttribute.Left,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Left,
    multiplier: 1.0,
    constant: padding.left
    item: view1,
    attribute: NSLayoutAttribute.Bottom,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Bottom,
    multiplier: 1.0,
    constant: -padding.bottom
    item: view1,
    attribute: NSLayoutAttribute.Right,
    relatedBy: NSLayoutRelation.Equal,
    toItem: superview,
    attribute: NSLayoutAttribute.Right,
    multiplier: 1.0,
    constant: -padding.right

Even with such a simple example the code needed is quite verbose and quickly becomes unreadable when you have more than 2 or 3 views. Another option is to use Visual Format Language (VFL), which is a bit less long winded. However the ASCII type syntax has its own pitfalls and its also a bit harder to animate as NSLayoutConstraint.constraintsWithVisualFormat returns an array.

Prepare to meet your Maker!

Heres the same constraints created using ConstraintMaker

let padding = UIEdgeInsetsMake(10, 10, 10, 10)

view1.snp_makeConstraints { make in // with is an optional semantic filler

Or even shorter

view1.snp_makeConstraints { make in
  return // this return is a fix for implicit returns in Swift and is only required for single line constraints

Also note in the first example we had to add the constraints to the superview superview.addConstraints. Snap however will automagically add constraints to the appropriate view.

Snap will also call view1.setTranslatesAutoresizingMaskIntoConstraints(false) for you.

Not all things are created equal

.equalTo equivalent to NSLayoutRelation.Equal

.lessThanOrEqualTo equivalent to NSLayoutRelation.LessThanOrEqual

.greaterThanOrEqualTo equivalent to NSLayoutRelation.GreaterThanOrEqual

These three equality constraints accept one argument which can be any of the following:

1. ViewAttribute

ViewAttribute NSLayoutAttribute
view.snp_left NSLayoutAttribute.Left
view.snp_right NSLayoutAttribute.Right
view.snp_top NSLayoutAttribute.Top
view.snp_bottom NSLayoutAttribute.Bottom
view.snp_leading NSLayoutAttribute.Leading
view.snp_trailing NSLayoutAttribute.Trailing
view.snp_width NSLayoutAttribute.Width
view.snp_height NSLayoutAttribute.Height
view.snp_centerX NSLayoutAttribute.CenterX
view.snp_centerY NSLayoutAttribute.CenterY
view.snp_baseline NSLayoutAttribute.Baseline

2. UIView/NSView

if you want view.left to be greater than or equal to label.left :

// these two constraints are exactly the same

3. Strict Checks

Auto Layout allows width and height to be set to constant values. if you want to set view to have a minimum and maximum width you could pass a primitive to the equality blocks:

// width >= 200 && width <= 400

However Auto Layout does not allow alignment attributes such as left, right, centerY etc to be set to constant values. So if you pass a primitive for these attributes Snap will turn these into constraints relative to the view’s superview ie:

// creates view.left <= view.superview.left + 10

You can also use other primitives and structs to build your constraints, like so:
make.size.equalTo(CGSizeMake(50, 100))
make.edges.equalTo(UIEdgeInsetsMake(10, 0, 10, 0))
make.left.equalTo(view).offset(UIEdgeInsetsMake(10, 0, 10, 0))

Learn to prioritize

.prority allows you to specify an exact priority

.priorityHigh equivalent to UILayoutPriority.DefaultHigh

.priorityMedium is half way between high and low

.priorityLow equivalent to UILayoutPriority.DefaultLow

Priorities are can be tacked on to the end of a constraint chain like so:


Composition, composition, composition

Snap also gives you a few convenience methods which create multiple constraints at the same time.


// make top, left, bottom, right equal view2

// make top = + 5, left = superview.left + 10,
//      bottom = superview.bottom - 15, right = superview.right - 20
make.edges.equalTo(superview).insets(UIEdgeInsetsMake(5, 10, 15, 20))


// make width and height greater than or equal to titleLabel

// make width = superview.width + 100, height = superview.height - 50
make.size.equalTo(superview).offset(CGSizeMake(100, -50))


// make centerX and centerY = button1

// make centerX = superview.centerX - 5, centerY = superview.centerY + 10, 10))

You can chain view attributes for increased readability:

// All edges but the top should equal those of the superview

Hold on for dear life

Sometimes you need modify existing constraints in order to animate or remove/replace constraints. In Snap there are a few different approaches to updating constraints.

1. References

You can hold on to a reference of a particular constraint by assigning the result of a constraint make expression to a local variable or a class property. You could also reference multiple constraints by storing them away in an array.

var topConstraint: Constraint? = nil


// when making constraints
view1.snp_makeConstraints { make in
  self.topConstraint =

// then later you can call

2. snp_remakeConstraints

snp_remakeConstraints is similar to snp_makeConstraints, but will first remove all existing constraints installed by Snap.

func changeButtonPosition() {
  self.button.snp_remakeConstraints { make in 

    if topLeft {
    } else {

Code Snippets

Copy the included code snippets to ~/Library/Developer/Xcode/UserData/CodeSnippets to write your snap closures at lightning speed!

snp_make -> <view>.snp_makeConstraints { make in <code> }

snp_remake -> <view>.snp_remakeConstraints { make in <code> }


  • Eye candy
  • Example projects
  • Tests