- Installation
- Getting Started
- Reference
carbonai.auth.getAccessToken
carbonai.auth.getWhiteLabeling
carbonai.dataSources.queryUserDataSources
carbonai.dataSources.revokeAccessToken
carbonai.embeddings.getDocuments
carbonai.embeddings.getEmbeddingsAndChunks
carbonai.embeddings.uploadChunksAndEmbeddings
carbonai.files.createUserFileTags
carbonai.files.delete
carbonai.files.deleteFileTags
carbonai.files.deleteMany
carbonai.files.deleteV2
carbonai.files.getParsedFile
carbonai.files.getRawFile
carbonai.files.queryUserFiles
carbonai.files.queryUserFilesDeprecated
carbonai.files.resync
carbonai.files.upload
carbonai.files.uploadFromUrl
carbonai.files.uploadText
carbonai.health.check
carbonai.integrations.connectDataSource
carbonai.integrations.connectFreshdesk
carbonai.integrations.connectGitbook
carbonai.integrations.createAwsIamUser
carbonai.integrations.getOauthUrl
carbonai.integrations.listConfluencePages
carbonai.integrations.listDataSourceItems
carbonai.integrations.listFolders
carbonai.integrations.listGitbookSpaces
carbonai.integrations.listLabels
carbonai.integrations.listOutlookCategories
carbonai.integrations.syncConfluence
carbonai.integrations.syncDataSourceItems
carbonai.integrations.syncFiles
carbonai.integrations.syncGitbook
carbonai.integrations.syncGmail
carbonai.integrations.syncOutlook
carbonai.integrations.syncRssFeed
carbonai.integrations.syncS3Files
carbonai.organizations.callGet
carbonai.users.callGet
carbonai.users.delete
carbonai.users.toggleUserFeatures
carbonai.users.updateUsers
carbonai.utilities.fetchUrls
carbonai.utilities.fetchYoutubeTranscripts
carbonai.utilities.processSitemap
carbonai.utilities.scrapeSitemap
carbonai.utilities.scrapeWeb
carbonai.utilities.searchUrls
carbonai.webhooks.addUrl
carbonai.webhooks.deleteUrl
carbonai.webhooks.urls
- In Xcode, select File > Add Packages… and enter
https://github.com/Carbon-for-Developers/carbon-swift-sdk
as the repository URL. - Select the latest version number from our tags page.
- Add the CarbonAI product to the target of your app.
- Add this line to your
Cartfile
:
github "Carbon-for-Developers/carbon-swift-sdk"
- Follow the Carthage installation instructions.
- In the future, to update to the latest version of the SDK, run the following command:
carthage update carbon-swift-sdk
- Add
source 'https://github.com/CocoaPods/Specs.git'
to yourPodfile
- Add
pod 'CarbonAI', '~> 0.2.2'
to yourPodfile
Your Podfile
should look like:
# Podfile
source 'https://github.com/CocoaPods/Specs.git'
target 'Example' do
pod 'CarbonAI', '~> 0.2.2'
end
- Run
pod install
❯ pod install
Analyzing dependencies
Downloading dependencies
Installing CarbonAI 0.2.2
Generating Pods project
Integrating client project
Pod installation complete! There is 1 dependency from the Podfile and 2 total pods installed.
- In the future, to update to the latest version of the SDK, run:
pod update CarbonAI
import CarbonAI
// 1) Get an access token for a customer
let carbon = CarbonAIClient(
accessToken: nil,
apiKey: "API_KEY",
customerId: "CUSTOMER_ID"
)
let token = try await carbon.auth.getAccessToken()
// 2) Use the access token to authenticate moving forward
let carbonWithToken = CarbonAIClient(
accessToken: token!.accessToken,
apiKey: nil,
customerId: nil
)
// use SDK as usual
white_labeling = try await carbonWithToken.auth.get_white_labeling()
// etc.
Get Access Token
let getAccessTokenResponse = try await carbonai.auth.getAccessToken()
/auth/v1/access_token
GET
Returns whether or not the organization is white labeled and which integrations are white labeled
:param current_user: the current user :param db: the database session :return: a WhiteLabelingResponse
let getWhiteLabelingResponse = try await carbonai.auth.getWhiteLabeling()
/auth/v1/white_labeling
GET
User Data Sources
let pagination = Pagination(
limit: 123,
offset: 123
)
let orderBy = OrganizationUserDataSourceOrderByColumns(
)
let orderDir = OrderDir(
)
let filters = OrganizationUserDataSourceFilters(
source: DataSourceTypeNullable.googleDrive,
ids: [
123
],
revokedAccess: false
)
let queryUserDataSourcesResponse = try await carbonai.dataSources.queryUserDataSources(
pagination: pagination,
orderBy: orderBy,
orderDir: orderDir,
filters: filters
)
pagination: Pagination
filters: OrganizationUserDataSourceFilters
OrganizationUserDataSourceResponse
/user_data_sources
POST
Revoke Access Token
let dataSourceId = 987
let revokeAccessTokenResponse = try await carbonai.dataSources.revokeAccessToken(
dataSourceId: dataSourceId
)
/revoke_access_token
POST
For pre-filtering documents, using tags_v2
is preferred to using tags
(which is now deprecated). If both tags_v2
and tags
are specified, tags
is ignored. tags_v2
enables
building complex filters through the use of "AND", "OR", and negation logic. Take the below input as an example:
{
"OR": [
{
"key": "subject",
"value": "holy-bible",
"negate": false
},
{
"key": "person-of-interest",
"value": "jesus christ",
"negate": false
},
{
"key": "genre",
"value": "religion",
"negate": true
}
{
"AND": [
{
"key": "subject",
"value": "tao-te-ching",
"negate": false
},
{
"key": "author",
"value": "lao-tzu",
"negate": false
}
]
}
]
}
In this case, files will be filtered such that:
- "subject" = "holy-bible" OR
- "person-of-interest" = "jesus christ" OR
- "genre" != "religion" OR
- "subject" = "tao-te-ching" AND "author" = "lao-tzu"
Note that the top level of the query must be either an "OR" or "AND" array. Currently, nesting is limited to 3. For tag blocks (those with "key", "value", and "negate" keys), the following typing rules apply:
- "key" isn't optional and must be a
string
- "value" isn't optional and can be
any
or list[any
] - "negate" is optional and must be
true
orfalse
. If present andtrue
, then the filter block is negated in the resulting query. It isfalse
by default.
When querying embeddings, you can optionally specify the media_type
parameter in your request. By default (if
not set), it is equal to "TEXT". This means that the query will be performed over files that have
been parsed as text (for now, this covers all files except image files). If it is equal to "IMAGE",
the query will be performed over image files (for now, .jpg
and .png
files). You can think of this
field as an additional filter on top of any filters set in file_ids
and
When hybrid_search
is set to true, a combination of keyword search and semantic search are used to rank
and select candidate embeddings during information retrieval. By default, these search methods are weighted
equally during the ranking process. To adjust the weight (or "importance") of each search method, you can use
the hybrid_search_tuning_parameters
property. The description for the different tuning parameters are:
weight_a
: weight to assign to semantic searchweight_b
: weight to assign to keyword search
You must ensure that sum(weight_a, weight_b,..., weight_n)
for all n weights is equal to 1. The equality
has an error tolerance of 0.001 to account for possible floating point issues.
In order to use hybrid search for a customer across a set of documents, two flags need to be enabled:
- Use the
/modify_user_configuration
endpoint to to enablesparse_vectors
for the customer. The payload body for this request is below:
{
"configuration_key_name": "sparse_vectors",
"value": {
"enabled": true
}
}
- Make sure hybrid search is enabled for the documents across which you want to perform the search. For the
/uploadfile
endpoint, this can be done by setting the following query parameter:generate_sparse_vectors=true
Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's
multimodal model; for text, we support OpenAI's text-embedding-ada-002
and Cohere's embed-multilingual-v3.0.
The model can be specified via the embedding_model
parameter (in the POST body for /embeddings
, and a query
parameter in /uploadfile
). If no model is supplied, the text-embedding-ada-002
is used by default. When performing
embedding queries, embeddings from files that used the specified model will be considered in the query.
For example, if files A and B have embeddings generated with OPENAI
, and files C and D have embeddings generated with
COHERE_MULTILINGUAL_V3
, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3
is
specified as the embedding_model
in /embeddings
, then only files C and D will be considered. Make sure that
the set of all files you want considered for a query have embeddings generated via the same model. For now, do not
set VERTEX_MULTIMODAL
as an embedding_model
. This model is used automatically by Carbon when it detects an image file.
let query = "query_example"
let k = 987
let tags = "TODO"
let queryVector = [
123
]
let fileIds = [
123
]
let parentFileIds = [
123
]
let tagsV2 = "TODO"
let includeTags = true
let includeVectors = true
let includeRawFile = true
let hybridSearch = true
let hybridSearchTuningParameters = HybridSearchTuningParamsNullable(
weightA: 123,
weightB: 123
)
let mediaType = FileContentTypesNullable(
)
let embeddingModel = EmbeddingGeneratorsNullable(
)
let getDocumentsResponse = try await carbonai.embeddings.getDocuments(
query: query,
k: k,
tags: tags,
queryVector: queryVector,
fileIds: fileIds,
parentFileIds: parentFileIds,
tagsV2: tagsV2,
includeTags: includeTags,
includeVectors: includeVectors,
includeRawFile: includeRawFile,
hybridSearch: hybridSearch,
hybridSearchTuningParameters: hybridSearchTuningParameters,
mediaType: mediaType,
embeddingModel: embeddingModel
)
Query for which to get related chunks and embeddings.
Number of related chunks to return.
A set of tags to limit the search to. Deprecated and may be removed in the future.
Optional query vector for which to get related chunks and embeddings. It must have been generated by the same model used to generate the embeddings across which the search is being conducted. Cannot provide both query
and query_vector
.
Optional list of file IDs to limit the search to
Optional list of parent file IDs to limit the search to. A parent file describes a file to which another file belongs (e.g. a folder)
A set of tags to limit the search to. Use this instead of tags
, which is deprecated.
Flag to control whether or not to include tags for each chunk in the response.
Flag to control whether or not to include embedding vectors in the response.
Flag to control whether or not to include a signed URL to the raw file containing each chunk in the response.
Flag to control whether or not to perform hybrid search.
hybrid_search_tuning_parameters: HybridSearchTuningParamsNullable
/embeddings
POST
Retrieve Embeddings And Content
let filters = EmbeddingsAndChunksFilters(
userFileId: 123,
embeddingModel: EmbeddingGeneratorsNullable.openai
)
let pagination = Pagination(
limit: 123,
offset: 123
)
let orderBy = EmbeddingsAndChunksOrderByColumns(
)
let orderDir = OrderDir(
)
let includeVectors = true
let getEmbeddingsAndChunksResponse = try await carbonai.embeddings.getEmbeddingsAndChunks(
filters: filters,
pagination: pagination,
orderBy: orderBy,
orderDir: orderDir,
includeVectors: includeVectors
)
filters: EmbeddingsAndChunksFilters
pagination: Pagination
/text_chunks
POST
Upload Chunks And Embeddings
let embeddingModel = EmbeddingGenerators(
)
let chunksAndEmbeddings = [
SingleChunksAndEmbeddingsUploadInput(
fileId: 123,
chunkSize: 123,
chunkOverlap: 123,
chunksAndEmbeddings: [
ChunksAndEmbeddings(
chunkNumber: 123,
chunk: "chunk_example",
embedding: [
123
]
)
]
)
]
let overwriteExisting = true
let chunksOnly = true
let customCredentials = "TODO"
let uploadChunksAndEmbeddingsResponse = try await carbonai.embeddings.uploadChunksAndEmbeddings(
embeddingModel: embeddingModel,
chunksAndEmbeddings: chunksAndEmbeddings,
overwriteExisting: overwriteExisting,
chunksOnly: chunksOnly,
customCredentials: customCredentials
)
/upload_chunks_and_embeddings
POST
A tag is a key-value pair that can be added to a file. This pair can then be used for searches (e.g. embedding searches) in order to narrow down the scope of the search. A file can have any number of tags. The following are reserved keys that cannot be used:
- db_embedding_id
- organization_id
- user_id
- organization_user_file_id
Carbon currently supports two data types for tag values - string
and list<string>
.
Keys can only be string
. If values other than string
and list<string>
are used,
they're automatically converted to strings (e.g. 4 will become "4").
let tags = "TODO"
let organizationUserFileId = 987
let createUserFileTagsResponse = try await carbonai.files.createUserFileTags(
tags: tags,
organizationUserFileId: organizationUserFileId
)
/create_user_file_tags
POST
Delete File Endpoint
let fileId = 987
let deleteResponse = try await carbonai.files.delete(
fileId: fileId
)
/deletefile/{file_id}
DELETE
Delete File Tags
let tags = [
"inner_example"
]
let organizationUserFileId = 987
let deleteFileTagsResponse = try await carbonai.files.deleteFileTags(
tags: tags,
organizationUserFileId: organizationUserFileId
)
/delete_user_file_tags
POST
Delete Files Endpoint
let fileIds = [
123
]
let syncStatuses = [
ExternalFileSyncStatuses.delayed
]
let deleteNonSyncedOnly = true
let sendWebhook = true
let deleteChildFiles = true
let deleteManyResponse = try await carbonai.files.deleteMany(
fileIds: fileIds,
syncStatuses: syncStatuses,
deleteNonSyncedOnly: deleteNonSyncedOnly,
sendWebhook: sendWebhook,
deleteChildFiles: deleteChildFiles
)
/delete_files
POST
Delete Files V2 Endpoint
let filters = OrganizationUserFilesToSyncFilters(
tags: "TODO",
source: SourceProperty(
),
name: "name_example",
tagsV2: "TODO",
ids: [
123
],
externalFileIds: [
"externalFileIds_example"
],
syncStatuses: [
ExternalFileSyncStatuses.delayed
],
parentFileIds: [
123
],
organizationUserDataSourceId: [
123
],
embeddingGenerators: [
EmbeddingGenerators.openai
],
rootFilesOnly: false,
includeAllChildren: false,
nonSyncedOnly: false,
requestIds: [
"requestIds_example"
]
)
let sendWebhook = true
let deleteV2Response = try await carbonai.files.deleteV2(
filters: filters,
sendWebhook: sendWebhook
)
filters: OrganizationUserFilesToSyncFilters
/delete_files_v2
POST
This route is deprecated. Use /user_files_v2
instead.
let fileId = 987
let getParsedFileResponse = try await carbonai.files.getParsedFile(
fileId: fileId
)
/parsed_file/{file_id}
GET
This route is deprecated. Use /user_files_v2
instead.
let fileId = 987
let getRawFileResponse = try await carbonai.files.getRawFile(
fileId: fileId
)
/raw_file/{file_id}
GET
For pre-filtering documents, using tags_v2
is preferred to using tags
(which is now deprecated). If both tags_v2
and tags
are specified, tags
is ignored. tags_v2
enables
building complex filters through the use of "AND", "OR", and negation logic. Take the below input as an example:
{
"OR": [
{
"key": "subject",
"value": "holy-bible",
"negate": false
},
{
"key": "person-of-interest",
"value": "jesus christ",
"negate": false
},
{
"key": "genre",
"value": "religion",
"negate": true
}
{
"AND": [
{
"key": "subject",
"value": "tao-te-ching",
"negate": false
},
{
"key": "author",
"value": "lao-tzu",
"negate": false
}
]
}
]
}
In this case, files will be filtered such that:
- "subject" = "holy-bible" OR
- "person-of-interest" = "jesus christ" OR
- "genre" != "religion" OR
- "subject" = "tao-te-ching" AND "author" = "lao-tzu"
Note that the top level of the query must be either an "OR" or "AND" array. Currently, nesting is limited to 3. For tag blocks (those with "key", "value", and "negate" keys), the following typing rules apply:
- "key" isn't optional and must be a
string
- "value" isn't optional and can be
any
or list[any
] - "negate" is optional and must be
true
orfalse
. If present andtrue
, then the filter block is negated in the resulting query. It isfalse
by default.
let pagination = Pagination(
limit: 123,
offset: 123
)
let orderBy = OrganizationUserFilesToSyncOrderByTypes(
)
let orderDir = OrderDir(
)
let filters = OrganizationUserFilesToSyncFilters(
tags: "TODO",
source: SourceProperty(
),
name: "name_example",
tagsV2: "TODO",
ids: [
123
],
externalFileIds: [
"externalFileIds_example"
],
syncStatuses: [
ExternalFileSyncStatuses.delayed
],
parentFileIds: [
123
],
organizationUserDataSourceId: [
123
],
embeddingGenerators: [
EmbeddingGenerators.openai
],
rootFilesOnly: false,
includeAllChildren: false,
nonSyncedOnly: false,
requestIds: [
"requestIds_example"
]
)
let includeRawFile = true
let includeParsedTextFile = true
let includeAdditionalFiles = true
let queryUserFilesResponse = try await carbonai.files.queryUserFiles(
pagination: pagination,
orderBy: orderBy,
orderDir: orderDir,
filters: filters,
includeRawFile: includeRawFile,
includeParsedTextFile: includeParsedTextFile,
includeAdditionalFiles: includeAdditionalFiles
)
pagination: Pagination
filters: OrganizationUserFilesToSyncFilters
/user_files_v2
POST
This route is deprecated. Use /user_files_v2
instead.
let pagination = Pagination(
limit: 123,
offset: 123
)
let orderBy = OrganizationUserFilesToSyncOrderByTypes(
)
let orderDir = OrderDir(
)
let filters = OrganizationUserFilesToSyncFilters(
tags: "TODO",
source: SourceProperty(
),
name: "name_example",
tagsV2: "TODO",
ids: [
123
],
externalFileIds: [
"externalFileIds_example"
],
syncStatuses: [
ExternalFileSyncStatuses.delayed
],
parentFileIds: [
123
],
organizationUserDataSourceId: [
123
],
embeddingGenerators: [
EmbeddingGenerators.openai
],
rootFilesOnly: false,
includeAllChildren: false,
nonSyncedOnly: false,
requestIds: [
"requestIds_example"
]
)
let includeRawFile = true
let includeParsedTextFile = true
let includeAdditionalFiles = true
let queryUserFilesDeprecatedResponse = try await carbonai.files.queryUserFilesDeprecated(
pagination: pagination,
orderBy: orderBy,
orderDir: orderDir,
filters: filters,
includeRawFile: includeRawFile,
includeParsedTextFile: includeParsedTextFile,
includeAdditionalFiles: includeAdditionalFiles
)
pagination: Pagination
filters: OrganizationUserFilesToSyncFilters
/user_files
POST
Resync File
let fileId = 987
let chunkSize = 987
let chunkOverlap = 987
let forceEmbeddingGeneration = true
let resyncResponse = try await carbonai.files.resync(
fileId: fileId,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
forceEmbeddingGeneration: forceEmbeddingGeneration
)
/resync_file
POST
This endpoint is used to directly upload local files to Carbon. The POST
request should be a multipart form request.
Note that the set_page_as_boundary
query parameter is applicable only to PDFs for now. When this value is set,
PDF chunks are at most one page long. Additional information can be retrieved for each chunk, however, namely the coordinates
of the bounding box around the chunk (this can be used for things like text highlighting). Following is a description
of all possible query parameters:
chunk_size
: the chunk size (in tokens) applied when splitting the documentchunk_overlap
: the chunk overlap (in tokens) applied when splitting the documentskip_embedding_generation
: whether or not to skip the generation of chunks and embeddingsset_page_as_boundary
: described aboveembedding_model
: the model used to generate embeddings for the document chunksuse_ocr
: whether or not to use OCR as a preprocessing step prior to generating chunks (only valid for PDFs currently)generate_sparse_vectors
: whether or not to generate sparse vectors for the file. Required for hybrid search.prepend_filename_to_chunks
: whether or not to prepend the filename to the chunk text
Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's
multimodal model; for text, we support OpenAI's text-embedding-ada-002
and Cohere's embed-multilingual-v3.0.
The model can be specified via the embedding_model
parameter (in the POST body for /embeddings
, and a query
parameter in /uploadfile
). If no model is supplied, the text-embedding-ada-002
is used by default. When performing
embedding queries, embeddings from files that used the specified model will be considered in the query.
For example, if files A and B have embeddings generated with OPENAI
, and files C and D have embeddings generated with
COHERE_MULTILINGUAL_V3
, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3
is
specified as the embedding_model
in /embeddings
, then only files C and D will be considered. Make sure that
the set of all files you want considered for a query have embeddings generated via the same model. For now, do not
set VERTEX_MULTIMODAL
as an embedding_model
. This model is used automatically by Carbon when it detects an image file.
let file = URL(string: "https://example.com")!
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = false
let setPageAsBoundary = false
let embeddingModel = TextEmbeddingGenerators(
)
let useOcr = false
let generateSparseVectors = false
let prependFilenameToChunks = false
let maxItemsPerChunk = 987
let parsePdfTablesWithOcr = false
let uploadResponse = try await carbonai.files.upload(
file: file,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
setPageAsBoundary: setPageAsBoundary,
embeddingModel: embeddingModel,
useOcr: useOcr,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
maxItemsPerChunk: maxItemsPerChunk,
parsePdfTablesWithOcr: parsePdfTablesWithOcr
)
Chunk size in tiktoken tokens to be used when processing file.
Chunk overlap in tiktoken tokens to be used when processing file.
Flag to control whether or not embeddings should be generated and stored when processing file.
Flag to control whether or not to set the a page's worth of content as the maximum amount of content that can appear in a chunk. Only valid for PDFs. See description route description for more information.
Embedding model that will be used to embed file chunks.
Whether or not to use OCR when processing files. Only valid for PDFs. Useful for documents with tables, images, and/or scanned text.
Whether or not to generate sparse vectors for the file. This is required for the file to be a candidate for hybrid search.
Whether or not to prepend the file's name to chunks.
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
Whether to use rich table parsing when use_ocr
is enabled.
/uploadfile
POST
Create Upload File From Url
let url = "url_example"
let fileName = "fileName_example"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let setPageAsBoundary = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let useTextract = true
let prependFilenameToChunks = true
let maxItemsPerChunk = 987
let parsePdfTablesWithOcr = true
let uploadFromUrlResponse = try await carbonai.files.uploadFromUrl(
url: url,
fileName: fileName,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
setPageAsBoundary: setPageAsBoundary,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
useTextract: useTextract,
prependFilenameToChunks: prependFilenameToChunks,
maxItemsPerChunk: maxItemsPerChunk,
parsePdfTablesWithOcr: parsePdfTablesWithOcr
)
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
/upload_file_from_url
POST
Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's
multimodal model; for text, we support OpenAI's text-embedding-ada-002
and Cohere's embed-multilingual-v3.0.
The model can be specified via the embedding_model
parameter (in the POST body for /embeddings
, and a query
parameter in /uploadfile
). If no model is supplied, the text-embedding-ada-002
is used by default. When performing
embedding queries, embeddings from files that used the specified model will be considered in the query.
For example, if files A and B have embeddings generated with OPENAI
, and files C and D have embeddings generated with
COHERE_MULTILINGUAL_V3
, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3
is
specified as the embedding_model
in /embeddings
, then only files C and D will be considered. Make sure that
the set of all files you want considered for a query have embeddings generated via the same model. For now, do not
set VERTEX_MULTIMODAL
as an embedding_model
. This model is used automatically by Carbon when it detects an image file.
let contents = "contents_example"
let name = "name_example"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let overwriteFileId = 987
let embeddingModel = EmbeddingGeneratorsNullable(
)
let generateSparseVectors = true
let uploadTextResponse = try await carbonai.files.uploadText(
contents: contents,
name: name,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
overwriteFileId: overwriteFileId,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors
)
/upload_text
POST
Health
let checkResponse = try await carbonai.health.check()
/health
GET
Connect Data Source
let authentication = AuthenticationProperty(
source: "TODO",
accessToken: "accessToken_example",
refreshToken: "refreshToken_example",
workspaceId: "workspaceId_example",
tenantName: "tenantName_example",
siteName: "siteName_example",
subdomain: "subdomain_example",
accessTokenSecret: "accessTokenSecret_example",
username: "username_example",
zoteroId: "zoteroId_example",
organizationName: "organizationName_example",
domain: "domain_example",
apiKey: "apiKey_example",
accessKey: "accessKey_example",
accessKeySecret: "accessKeySecret_example"
)
let syncOptions = SyncOptions(
tags: "TODO",
chunkSize: 123,
chunkOverlap: 123,
skipEmbeddingGeneration: false,
embeddingModel: EmbeddingGeneratorsNullable.openai,
generateSparseVectors: false,
prependFilenameToChunks: false,
maxItemsPerChunk: 123,
syncFilesOnConnection: true,
setPageAsBoundary: false
)
let connectDataSourceResponse = try await carbonai.integrations.connectDataSource(
authentication: authentication,
syncOptions: syncOptions
)
authentication: AuthenticationProperty
sync_options: SyncOptions
/integrations/connect
POST
Refer this article to obtain an API key https://support.freshdesk.com/en/support/solutions/articles/215517. Make sure that your API key has the permission to read solutions from your account and you are on a paid plan. Once you have an API key, you can make a request to this endpoint along with your freshdesk domain. This will trigger an automatic sync of the articles in your "solutions" tab. Additional parameters below can be used to associate data with the synced articles or modify the sync behavior.
let domain = "domain_example"
let apiKey = "apiKey_example"
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGeneratorsNullable(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let syncFilesOnConnection = true
let requestId = "requestId_example"
let connectFreshdeskResponse = try await carbonai.integrations.connectFreshdesk(
domain: domain,
apiKey: apiKey,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
syncFilesOnConnection: syncFilesOnConnection,
requestId: requestId
)
/integrations/freshdesk
POST
You will need an access token to connect your Gitbook account. Note that the permissions will be defined by the user generating access token so make sure you have the permission to access spaces you will be syncing. Refer this article for more details https://developer.gitbook.com/gitbook-api/authentication. Additionally, you need to specify the name of organization you will be syncing data from.
let organization = "organization_example"
let accessToken = "accessToken_example"
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let syncFilesOnConnection = true
let requestId = "requestId_example"
let connectGitbookResponse = try await carbonai.integrations.connectGitbook(
organization: organization,
accessToken: accessToken,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
syncFilesOnConnection: syncFilesOnConnection,
requestId: requestId
)
/integrations/gitbook
POST
Create a new IAM user with permissions to:
- List all buckets.
- Read from the specific buckets and objects to sync with Carbon. Ensure any future buckets or objects carry the same permissions.
let accessKey = "accessKey_example"
let accessKeySecret = "accessKeySecret_example"
let createAwsIamUserResponse = try await carbonai.integrations.createAwsIamUser(
accessKey: accessKey,
accessKeySecret: accessKeySecret
)
/integrations/s3
POST
This endpoint can be used to generate the following URLs
- An OAuth URL for OAuth based connectors
- A file syncing URL which skips the OAuth flow if the user already has a valid access token and takes them to the success state.
let service = DataSourceType(
)
let tags = TODO
let scope = "scope_example"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGeneratorsNullable(
)
let zendeskSubdomain = "zendeskSubdomain_example"
let microsoftTenant = "microsoftTenant_example"
let sharepointSiteName = "sharepointSiteName_example"
let confluenceSubdomain = "confluenceSubdomain_example"
let generateSparseVectors = true
let prependFilenameToChunks = true
let maxItemsPerChunk = 987
let salesforceDomain = "salesforceDomain_example"
let syncFilesOnConnection = true
let setPageAsBoundary = true
let dataSourceId = 987
let connectingNewAccount = true
let requestId = "requestId_example"
let useOcr = true
let parsePdfTablesWithOcr = true
let getOauthUrlResponse = try await carbonai.integrations.getOauthUrl(
service: service,
tags: tags,
scope: scope,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
zendeskSubdomain: zendeskSubdomain,
microsoftTenant: microsoftTenant,
sharepointSiteName: sharepointSiteName,
confluenceSubdomain: confluenceSubdomain,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
maxItemsPerChunk: maxItemsPerChunk,
salesforceDomain: salesforceDomain,
syncFilesOnConnection: syncFilesOnConnection,
setPageAsBoundary: setPageAsBoundary,
dataSourceId: dataSourceId,
connectingNewAccount: connectingNewAccount,
requestId: requestId,
useOcr: useOcr,
parsePdfTablesWithOcr: parsePdfTablesWithOcr
)
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
Used to specify whether Carbon should attempt to sync all your files automatically when authorization is complete. This is only supported for a subset of connectors and will be ignored for the rest. Supported connectors: Intercom, Zendesk, Gitbook, Confluence, Salesforce, Freshdesk
Used to specify a data source to sync from if you have multiple connected. It can be skipped if you only have one data source of that type connected or are connecting a new account.
Used to connect a new data source. If not specified, we will attempt to create a sync URL for an existing data source based on type and ID.
This request id will be added to all files that get synced using the generated OAuth URL
Enable OCR for files that support it. Supported formats: pdf
/integrations/oauth_url
POST
To begin listing a user's Confluence pages, at least a data_source_id
of a connected
Confluence account must be specified. This base request returns a list of root pages for
every space the user has access to in a Confluence instance. To traverse further down
the user's page directory, additional requests to this endpoint can be made with the same
data_source_id
and with parent_id
set to the id of page from a previous request. For
convenience, the has_children
property in each directory item in the response list will
flag which pages will return non-empty lists of pages when set as the parent_id
.
let dataSourceId = 987
let parentId = "parentId_example"
let listConfluencePagesResponse = try await carbonai.integrations.listConfluencePages(
dataSourceId: dataSourceId,
parentId: parentId
)
/integrations/confluence/list
POST
List Data Source Items
let dataSourceId = 987
let parentId = "parentId_example"
let filters = ListItemsFiltersNullable(
externalIds: [
"externalIds_example"
],
ids: [
123
],
name: "name_example",
rootFilesOnly: false
)
let pagination = Pagination(
limit: 123,
offset: 123
)
let listDataSourceItemsResponse = try await carbonai.integrations.listDataSourceItems(
dataSourceId: dataSourceId,
parentId: parentId,
filters: filters,
pagination: pagination
)
filters: ListItemsFiltersNullable
pagination: Pagination
/integrations/items/list
POST
After connecting your Outlook account, you can use this endpoint to list all of your folders on outlook. This includes both system folders like "inbox" and user created folders.
let dataSourceId = 987
let listFoldersResponse = try await carbonai.integrations.listFolders(
dataSourceId: dataSourceId
)
/integrations/outlook/user_folders
GET
After connecting your Gitbook account, you can use this endpoint to list all of your spaces under current organization.
let dataSourceId = 987
let listGitbookSpacesResponse = try await carbonai.integrations.listGitbookSpaces(
dataSourceId: dataSourceId
)
/integrations/gitbook/spaces
GET
After connecting your Gmail account, you can use this endpoint to list all of your labels. User created labels will have the type "user" and Gmail's default labels will have the type "system"
let dataSourceId = 987
let listLabelsResponse = try await carbonai.integrations.listLabels(
dataSourceId: dataSourceId
)
/integrations/gmail/user_labels
GET
After connecting your Outlook account, you can use this endpoint to list all of your categories on outlook. We currently support listing up to 250 categories.
let dataSourceId = 987
let listOutlookCategoriesResponse = try await carbonai.integrations.listOutlookCategories(
dataSourceId: dataSourceId
)
/integrations/outlook/user_categories
GET
After listing pages in a user's Confluence account, the set of selected page ids
and the
connected account's data_source_id
can be passed into this endpoint to sync them into
Carbon. Additional parameters listed below can be used to associate data to the selected
pages or alter the behavior of the sync.
let dataSourceId = 987
let ids = IdsProperty(
)
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGeneratorsNullable(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let maxItemsPerChunk = 987
let setPageAsBoundary = true
let requestId = "requestId_example"
let useOcr = true
let parsePdfTablesWithOcr = true
let syncConfluenceResponse = try await carbonai.integrations.syncConfluence(
dataSourceId: dataSourceId,
ids: ids,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
maxItemsPerChunk: maxItemsPerChunk,
setPageAsBoundary: setPageAsBoundary,
requestId: requestId,
useOcr: useOcr,
parsePdfTablesWithOcr: parsePdfTablesWithOcr
)
ids: IdsProperty
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
/integrations/confluence/sync
POST
Sync Data Source Items
let dataSourceId = 987
let syncDataSourceItemsResponse = try await carbonai.integrations.syncDataSourceItems(
dataSourceId: dataSourceId
)
/integrations/items/sync
POST
After listing files and folders via /integrations/items/sync and integrations/items/list, use the selected items' external ids as the ids in this endpoint to sync them into Carbon. Sharepoint items take an additional parameter root_id, which identifies the drive the file or folder is in and is stored in root_external_id. That additional paramter is optional and excluding it will tell the sync to assume the item is stored in the default Documents drive.
let dataSourceId = 987
let ids = IdsProperty(
)
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGeneratorsNullable(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let maxItemsPerChunk = 987
let setPageAsBoundary = true
let requestId = "requestId_example"
let useOcr = true
let parsePdfTablesWithOcr = true
let syncFilesResponse = try await carbonai.integrations.syncFiles(
dataSourceId: dataSourceId,
ids: ids,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
maxItemsPerChunk: maxItemsPerChunk,
setPageAsBoundary: setPageAsBoundary,
requestId: requestId,
useOcr: useOcr,
parsePdfTablesWithOcr: parsePdfTablesWithOcr
)
ids: IdsProperty
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
/integrations/files/sync
POST
You can sync upto 20 Gitbook spaces at a time using this endpoint. Additional parameters below can be used to associate data with the synced pages or modify the sync behavior.
let spaceIds = [
"inner_example"
]
let dataSourceId = 987
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let requestId = "requestId_example"
let syncGitbookResponse = try await carbonai.integrations.syncGitbook(
spaceIds: spaceIds,
dataSourceId: dataSourceId,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
requestId: requestId
)
/integrations/gitbook/sync
POST
Once you have successfully connected your gmail account, you can choose which emails to sync with us using the filters parameter. Filters is a JSON object with key value pairs. It also supports AND and OR operations. For now, we support a limited set of keys listed below.
label: Inbuilt Gmail labels, for example "Important" or a custom label you created.
after or before: A date in YYYY/mm/dd format (example 2023/12/31). Gets emails after/before a certain date.
You can also use them in combination to get emails from a certain period.
is: Can have the following values - starred, important, snoozed, and unread
Using keys or values outside of the specified values can lead to unexpected behaviour.
An example of a basic query with filters can be
{
"filters": {
"key": "label",
"value": "Test"
}
}
Which will list all emails that have the label "Test".
You can use AND and OR operation in the following way:
{
"filters": {
"AND": [
{
"key": "after",
"value": "2024/01/07"
},
{
"OR": [
{
"key": "label",
"value": "Personal"
},
{
"key": "is",
"value": "starred"
}
]
}
]
}
}
This will return emails after 7th of Jan that are either starred or have the label "Personal". Note that this is the highest level of nesting we support, i.e. you can't add more AND/OR filters within the OR filter in the above example.
let filters = "TODO"
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let dataSourceId = 987
let requestId = "requestId_example"
let syncGmailResponse = try await carbonai.integrations.syncGmail(
filters: filters,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
dataSourceId: dataSourceId,
requestId: requestId
)
/integrations/gmail/sync
POST
Once you have successfully connected your Outlook account, you can choose which emails to sync with us
using the filters and folder parameter. "folder" should be the folder you want to sync from Outlook. By default
we get messages from your inbox folder.
Filters is a JSON object with key value pairs. It also supports AND and OR operations.
For now, we support a limited set of keys listed below.
category: Custom categories that you created in Outlook.
after or before: A date in YYYY/mm/dd format (example 2023/12/31). Gets emails after/before a certain date. You can also use them in combination to get emails from a certain period.
is: Can have the following values: flagged
An example of a basic query with filters can be
{
"filters": {
"key": "category",
"value": "Test"
}
}
Which will list all emails that have the category "Test".
Specifying a custom folder in the same query
{
"folder": "Folder Name",
"filters": {
"key": "category",
"value": "Test"
}
}
You can use AND and OR operation in the following way:
{
"filters": {
"AND": [
{
"key": "after",
"value": "2024/01/07"
},
{
"OR": [
{
"key": "category",
"value": "Personal"
},
{
"key": "category",
"value": "Test"
},
]
}
]
}
}
This will return emails after 7th of Jan that have either Personal or Test as category. Note that this is the highest level of nesting we support, i.e. you can't add more AND/OR filters within the OR filter in the above example.
let filters = "TODO"
let tags = "TODO"
let folder = "folder_example"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let dataSourceId = 987
let requestId = "requestId_example"
let syncOutlookResponse = try await carbonai.integrations.syncOutlook(
filters: filters,
tags: tags,
folder: folder,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
dataSourceId: dataSourceId,
requestId: requestId
)
/integrations/outlook/sync
POST
Rss Feed
let url = "url_example"
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let requestId = "requestId_example"
let syncRssFeedResponse = try await carbonai.integrations.syncRssFeed(
url: url,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
requestId: requestId
)
/integrations/rss_feed
POST
After optionally loading the items via /integrations/items/sync and integrations/items/list, use the bucket name and object key as the ID in this endpoint to sync them into Carbon. Additional parameters below can associate data with the selected items or modify the sync behavior
let ids = [
S3GetFileInput(
id: "id_example",
bucket: "bucket_example"
)
]
let tags = "TODO"
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let embeddingModel = EmbeddingGenerators(
)
let generateSparseVectors = true
let prependFilenameToChunks = true
let maxItemsPerChunk = 987
let setPageAsBoundary = true
let dataSourceId = 987
let requestId = "requestId_example"
let useOcr = true
let parsePdfTablesWithOcr = true
let syncS3FilesResponse = try await carbonai.integrations.syncS3Files(
ids: ids,
tags: tags,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
embeddingModel: embeddingModel,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
maxItemsPerChunk: maxItemsPerChunk,
setPageAsBoundary: setPageAsBoundary,
dataSourceId: dataSourceId,
requestId: requestId,
useOcr: useOcr,
parsePdfTablesWithOcr: parsePdfTablesWithOcr
)
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
/integrations/s3/files
POST
Get Organization
let callGetResponse = try await carbonai.organizations.callGet()
/organization
GET
User Endpoint
let customerId = "customerId_example"
let callGetResponse = try await carbonai.users.callGet(
customerId: customerId
)
/user
POST
Delete Users
let customerIds = [
"inner_example"
]
let deleteResponse = try await carbonai.users.delete(
customerIds: customerIds
)
/delete_users
POST
Toggle User Features
let configurationKeyName = "configurationKeyName_example"
let value = "TODO"
let toggleUserFeaturesResponse = try await carbonai.users.toggleUserFeatures(
configurationKeyName: configurationKeyName,
value: value
)
/modify_user_configuration
POST
Update Users
let customerIds = [
"inner_example"
]
let autoSyncEnabledSources = AutoSyncEnabledSourcesProperty(
)
let updateUsersResponse = try await carbonai.users.updateUsers(
customerIds: customerIds,
autoSyncEnabledSources: autoSyncEnabledSources
)
List of organization supplied user IDs
auto_sync_enabled_sources: AutoSyncEnabledSourcesProperty
/update_users
POST
Extracts all URLs from a webpage.
Args: url (str): URL of the webpage
Returns: FetchURLsResponse: A response object with a list of URLs extracted from the webpage and the webpage content.
let url = "url_example"
let fetchUrlsResponse = try await carbonai.utilities.fetchUrls(
url: url
)
/fetch_urls
GET
Fetches english transcripts from YouTube videos.
Args: id (str): The ID of the YouTube video. raw (bool): Whether to return the raw transcript or not. Defaults to False.
Returns: dict: A dictionary with the transcript of the YouTube video.
let id = "id_example"
let raw = false
let fetchYoutubeTranscriptsResponse = try await carbonai.utilities.fetchYoutubeTranscripts(
id: id,
raw: raw
)
/fetch_youtube_transcript
GET
Retrieves all URLs from a sitemap, which can subsequently be utilized with our web_scrape
endpoint.
let url = "url_example"
let processSitemapResponse = try await carbonai.utilities.processSitemap(
url: url
)
/process_sitemap
GET
Extracts all URLs from a sitemap and performs a web scrape on each of them.
Args: sitemap_url (str): URL of the sitemap
Returns: dict: A response object with the status of the scraping job message.-->
let url = "url_example"
let tags = "TODO"
let maxPagesToScrape = 987
let chunkSize = 987
let chunkOverlap = 987
let skipEmbeddingGeneration = true
let enableAutoSync = true
let generateSparseVectors = true
let prependFilenameToChunks = true
let htmlTagsToSkip = [
"inner_example"
]
let cssClassesToSkip = [
"inner_example"
]
let cssSelectorsToSkip = [
"inner_example"
]
let embeddingModel = EmbeddingGenerators(
)
let scrapeSitemapResponse = try await carbonai.utilities.scrapeSitemap(
url: url,
tags: tags,
maxPagesToScrape: maxPagesToScrape,
chunkSize: chunkSize,
chunkOverlap: chunkOverlap,
skipEmbeddingGeneration: skipEmbeddingGeneration,
enableAutoSync: enableAutoSync,
generateSparseVectors: generateSparseVectors,
prependFilenameToChunks: prependFilenameToChunks,
htmlTagsToSkip: htmlTagsToSkip,
cssClassesToSkip: cssClassesToSkip,
cssSelectorsToSkip: cssSelectorsToSkip,
embeddingModel: embeddingModel
)
/scrape_sitemap
POST
Conduct a web scrape on a given webpage URL. Our web scraper is fully compatible with JavaScript and supports recursion depth, enabling you to efficiently extract all content from the target website.
let scrapeWebResponse = try await carbonai.utilities.scrapeWeb(
)
[WebscrapeRequest]
/web_scrape
POST
Perform a web search and obtain a list of relevant URLs.
As an illustration, when you perform a search for “content related to MRNA,” you will receive a list of links such as the following:
- https://tomrenz.substack.com/p/mrna-and-why-it-matters
- https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/
- https://www.statnews.com/2022/11/16/covid-19-vaccines-were-a-success-but-mrna-still-has-a-delivery-problem/
- https://joomi.substack.com/p/were-still-being-misled-about-how
Subsequently, you can submit these links to the web_scrape endpoint in order to retrieve the content of the respective web pages.
Args: query (str): Query to search for
Returns: FetchURLsResponse: A response object with a list of URLs for a given search query.
let query = "query_example"
let searchUrlsResponse = try await carbonai.utilities.searchUrls(
query: query
)
/search_urls
GET
Add Webhook Url
let url = "url_example"
let addUrlResponse = try await carbonai.webhooks.addUrl(
url: url
)
/add_webhook
POST
Delete Webhook Url
let webhookId = 987
let deleteUrlResponse = try await carbonai.webhooks.deleteUrl(
webhookId: webhookId
)
/delete_webhook/{webhook_id}
DELETE
Webhook Urls
let pagination = Pagination(
limit: 123,
offset: 123
)
let orderBy = WebhookOrderByColumns(
)
let orderDir = OrderDir(
)
let filters = WebhookFilters(
ids: [
123
]
)
let urlsResponse = try await carbonai.webhooks.urls(
pagination: pagination,
orderBy: orderBy,
orderDir: orderDir,
filters: filters
)
pagination: Pagination
filters: WebhookFilters
/webhooks
POST
This TypeScript package is automatically generated by Konfig